

Aparimit Kasliwal

 [Website](#) | [aparimit11](#) | [Aparimit](#) | ap_kasliwal@berkeley.edu

EDUCATION

May, 2024 - Present	PhD (Systems Engineering) UC Berkeley, CA	(Major GPA: 4.0/4.0)
<i>Designated Focus:</i> Computational Data Science & Engineering. <i>Research Focus:</i> Network Science, Urban Mobility, Mechanism Design		
Aug, 2023 - May, 2024	MS (Systems Engineering) UC Berkeley, CA	(GPA: 3.87/4.0)
	Graduate Certificate in Applied Data Science	(GPA: 4.0/4.0)
Jul, 2019 - May, 2023	BTech (Civil Engineering) IIT Delhi, India	(GPA: 8.14/10.0)

SELECTED PUBLICATIONS

Aparimit Kasliwal et al. (2025). “Hierarchical Analysis of Spreading Dynamics in Complex Systems”. In: *Computer-Aided Civil and Infrastructure Engineering* 40, pp. 6223–6241. URL: <https://doi.org/10.1111/mice.70165>.

Ozturk, A. T. et al. (July 2025). “A Mesoscopic Model of Vehicular Emissions Informed by Direct Measurements and Mobility Science”. In: *Sustainable Cities & Society* 129, p. 106421. URL: <https://doi.org/10.1016/j.scs.2025.106421>.

Cao, S. et al. (2026). “DeepTimeGeo: Trajectory Reconstruction from Sparse Data with Transformer”. In: *IEEE Transactions on Intelligent Transportation Systems*. URL: <https://doi.org/10.1109/TITS.2026.3657275>.

PROJECTS

- **Pricing & Matching Policy Development for Ride-sharing** [Course Description](#)
 - Spatial modeling of demand patterns through Uber H3 Indexing for pricing riders accordingly
 - Development of state-based, dynamic, and optimal pricing & matching policies for ride-sharing
- **Parallelizing TimeGeo for Scalable Urban Mobility Simulations** [Project Description](#)
 - Parallelized Stay Detection and Parameter Generation for simulations from sparse LBS data
 - Improved scalability through distributed processing and accuracy-preserving mechanisms

SKILLS

Programming: Python, Git, Bash, Scientific & Statistical Computing, MATLAB, NetworkX
Machine Learning: Code Parallelization, JAX, Pytorch, PyG, Graph Representation Learning
Technical Skills: Geo-tagged Data, Map Matching, Trajectory Generation, Uber H3, Networks

GRADUATE LEVEL COURSEWORK

CS 267: Applications of Parallel Computers	CE 290: Games & Intelligent Agents in Transportation Systems
EECS 227AT: Optimization Models	STAT 243: Statistical Computing
CS 294-179: Networks & Spread of (Mis)Information	CE 263H: Human Mobility & Network Science