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1 Introduction

The expansion of cities can lead to one of two distinct configurations: monocentric or polycentric,
each of which represents a mutually exclusive urban state that any city may assume. Several
works as [1] and [6] have classified the development of these different states as occurring because
of purely attractivity-driven factors, or purely distance-driven factors.

The longstanding Central Place Theory (CPT) proposed [3] aimed to characterize cities by
emphasizing the arrangement of central places and the interaction between them, facilitating the
classification of cities into either mono centric (single dominant center) or poly centric (multiple
centers) structures based on the distribution of services and functions across the urban land-
scape. According to this theory, larger, higher-order central places offer specialized and more
diverse services compared to smaller, lower-order ones.

Our findings are coherent with the CPT, and we present a mathod to highlight the stark
differences between a monocentric and a polycentric setting in this respect. With Boston and
Los Angeles as hallmark examples of a monocentric and a polycentric city respectively, we bring
out the differences in the distribution of their center sizes as a way to distinguish between these
types of city formations.

In our work, we aim to characterize the distance between the different centers within a city.
Our method encapsulates both, the attractivity and the distance-driven regimes directly through
the data that we consider pertaining to both of these regimes. We define attractivity to be an
entropy based measure of the cardinality of facilities in a geographical location, and we consider
the TimeGeo [5] generated trajectories for millions of synthetic agents in Boston and Los Angeles
for a measure of the distances that individuals travel in both of these cities.

We present the specific characteristics of the data that we use for this study in the next
section, along with the modifications we introduced to particular methods for clustering and
for calculating the radii of gyration of each user. Finally, we present the results based on the
methods we used, and tie the findings back to the theoretical foundation of the previous work(s).

2 Data and Methods

2.1 Data

For our study, we build our story using two different datasets, described as follows;

2.1.1 Facility Data

Upon extraction of different types of facilities and their locations using OSMNx [2] from the
widely popular Open Street Map (OSM) library, we are able to obtain the spatial distribution
of these facilities for both, Boston and Los Angeles. As we describe in further detail in the next
section(s), we approximate the attractivity of a center by evaluating the number of facilities
located within the bounds of that center. This simple approximation aligns with the notion of
attractivity and also leverages the data to its best.



2.1.2 TimeGeo Trajectory Data

The movement of multiple different individuals (or agents) is captured by the TimeGeo data
that synthetically generates trajectories based on appropriate previous modelling findings. For
both Boston and Los Angeles, this data provides us with latitude, longitude, type of activity,
unique agent ID, and time stamps. We leverage this rich data by calculating a slightly modified
version [8] of the longstanding metric of radius of gyration [4], calculation and implementation

of which is described further below.
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Figure 1: Facilities within Boston

Figure 2: Calculated R4 for each agent in

Boston with their Home Locations

2.2 Methods

We draw on the following methods for performing the analysis for our study;

2.2.1 DModified Radius of Gyration

In the domain of human mobility analysis, the standard formulation [4] calculates the radius of

gyration in the following way;

where:

ry : Radius of gyration

n : Number of visited locations

r; : Position of the individual at location i

(r) : Average position of the individual

(1)

Note that here, (r) is the calculated “center of mass” of the trajectory if the individual. How-
ever, in our study for the calculation of the center locations in a city, we require the calculation
of radius of gyration from the home location of each individual. Thus, the modified equation

for that we use for calculating the radius of gyration is as follows;

TImodified =

where:

TGmodi fied - Modified form of Radius of gyration

rp, : Home location of the individual



2.2.2 Clustering

First, we formulate the attractivity regime by forming clusters using solely the facility data. This
is done using the KMeans algorithm. Our initial foray included experiments with Agglomerative
and Divisive Clustering Methods of which the latter performed appreciably, we chose KMeans
to move forward because of its simplistic approach of assigning individual points to the closest
center - which comes in handy later when we combine this regime with the distance-driven radius
of gyration data.
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Figure 3: Tessellation of facility-clusters ) ) . .
in Boston Figure 4: Tessellation of facility-clusters in LA

2.2.3 Attractivity-Regime; Evaluating K using Entropy Characterisation

In order to choose which K is the best for KMeans clustering, we implement a slightly modified
version of the elbow method as follows. After running the algorithm for multiple values of K
(from 1 — 40), we choose that value of K which maximizes the variance of entropies over the
clusters given as an output by the KMeans algorithm. This captures the observed result that
centers within cities tend to have most, if not all, kinds of facilities including shopping malls,
schools, hospitals, grocery stores, etc - as is also suggested by the Central Place Theory [3].

n
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where:

H : Shannon entropy
n : Number of facility types
p; : Probability of occurrence of the i-th facility type

Simply put, we leverage the elbow method but define a new metric (Shannon Entropy, as
above) against which we compare the feasibility of different k values in the KMeans algorithm.

2.2.4 Distance-Regime; Radius of Gyration for Evaluating K

Below is the algorithm we use to evaluate the best K for KMeans using a distance-driven ap-
proach. Under ideal conditions, where a particular K gives the exact characterization of centers
with the city, the radius of gyration for each of individual within a cluster must be equal to the
distance from the cluster-center. Here, we measure the deviation from this ideal situation and
use it to compare the different values of K.



Algorithm 1 Evaluating K for K-Means in the Distance-Driven Regime

Require: N >0
for k in {1,2,..... ,N} do
get clusters via K-Means
for each cluster do

deviations +(rog - distance_to_center)
calculate the variance of the deviations

end for
end for

> Deviation for each agent
> Spread of these deviations

Choose K that minimizes the mean of the variances of these deviations

3 Results

3.1 Shannon Entropy: Maximizing Diversity in Clusters

Within the attractivity regime, and in coherence with the propositions of the Central Place The-
ory [3], higher order centers tend to have specialized functions and thus possess higher diversity
in terms of their facilities. We utilize this theoretical argument by formulating entropy of the

clusters as described in the methods section.

The entropy of the clusters, however, keeps on increasing as we increase the K value for
the KMeans algorithm, as we should expect. We thus implement the underlying essence of the
“Elbow Method” to come up with a suitable choice for K.

Shannon Entropy for Different Clustering for facilities in Boston

e
IS
L

e
w
L

Variance of Shannon Entropies of Clusters
o [=]
- N
L

e
o
L

T T T T T T
] 10 20 30 40 50
Value of K in KMeans Clustering

Variance of Shannon Entrepies of Clusters

o
N
o

e
N
o

o
=
7]

o
=
o

e
o
o

e
o
=]

Shannon Entropy for Different Clustering for facilities in LA

[} 10 20 30 40 50
Value of K in KMeans Clustering

Figure 5: Shannon Entropy for Facility
Clusters in Boston

Figure 6: Shannon Entropy for Facility
Clusters in Los Angeles

We make the following key observations from the figures above, which plot the Shannon
Entropy for the clustering constructed for numerous facilities in the cities of Boston and Los

Angeles;

e The Shannon entropy of these clusters is a monotonically increasing function of the value
K in the KMeans algorithm. This means that the clusters keep on getting diversified as
the total number of clusters increases, which is what we theoretically expect as well.

e However, note that this increment plateaus, as argued by the Elbow Method. Interestingly,
for Boston, the entropy is maximized for around 20 clusters while the number is around

30, and thus higher, for Los Angeles.

3.2 Minimizing Deviation between ROG and Distance To Center Within

Clusters

Within the distance-driven regime, each person is bound to travel to the nearest center. Thus,
in an idealized distance-driven regime as characterized by our clustering, the radius of gyration



of each person should be exactly equal to the distance of the center closest to them.

With the aim of minimizing these deviations to get closer to the best possible clustering,
we calculate this deviation between the radius of gyration of each agent and distance to their
nearest center. Leveraging the elbow method, we choose a reasonable K for both Boston and
Los Angeles, as the following figures and their interpretation suggests.
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We make the following key observations from the figures above, which plot the deviation
between the radius of gyration for each agent and the distance to the closest center, for the
clusters formed for different values of K for both Boston and Los Angeles;

e This deviation is a monotonically decreasing function of the number of clusters, as we would
expect from theoretical standpoint. As we increase K, the number of cluster increases and
the granularity of the problem also increases - thereby rendering the radius of gyration of
each agent almost the same as the distance to their closest centers.

e However, note that this decrement plateaus at some value of K, as argued by the Elbow
Method. Interestingly, for Boston, this deviation is minimized at around 20 clusters, while
the number is roughly around 30 for Los Angeles, which is higher than Boston.

Bringing these results together, we note that the ideal number of clusters for Boston is
lesser than Los Angeles. Furthermore, the higher order centers differ more in size, function,
and diversity form lower order centers for Boston, thereby arguing for its monocentric state as
opposed to Los Angeles for which the size, function and diversity of centers remains more or less
constant, thereby making the case for its polycentric state.

3.3 Comparative Analysis: Monocentricity Vs Polycentricity

We present three distinct formulations in terms of the parameters pertaining to our data, that
distinctly draw out the differences between a monocentric and a polycentric city. The broader
idea, on which our following three formulations are based, is the following.

Central Place Theory [3] suggests that there are multiple centers within any city, all of which
can be distinguished based on their “order”: a few centers are higher-ordered, a few more cen-
ters are lower-ordered, even more are further lower-ordered, and so on. In its essence, the higher
ordered centers provide more specific, diverse set of services and functionalities.

Most importantly, cities of both types follow the same characterization - all of them have
different order centers. However, the higher order centers in a monocentric setting are much
more dominant compared to the other centers. On the contrary, higher order centers aren’t any
more dominant than the other centers in a polycentric setting, thus maintaining a uniformity in
the order of centers for a polycentric setting.



We define a center to be higher-order, based on the following three formulations, all of which
lead to the same conclusion.

3.3.1 Cardinality of Facilities

Relative cardinality of the facilities for each cluster is representative of whether a center is higher-
ordered or otherwise. In order to compare the relative dominance of higher-order clusters in a
monocentric city Vs a polycentric city, we capture the following numeric results;

5 e
Parameter; = nzizl Fa(fqltlles.ln Top Cluster;
Zi:n— 4, Facilities in Bottom Cluster;

Parameter; for Boston | 8.75
Parameter; for LA 4.06

3.3.2 Area

Relative area of the facilities for each cluster is also representative of whether a center is higher-
ordered, or otherwise. We compare the variance of the area for the clustering within Boston and
Los Angeles - where a high variance shows that there’s a much higher spread of the numerical
area of clusters present, and a low variance is equivalent to clusters that are more uniform across
different orders, similar to the case in a polycentric setting. We then compare these numerical
values for monocentric and polycentric cities. We obtain cluster areas by computing the area of
the convex hull that captures all points in that cluster.

Parametery = Var(A) = % Z(Ai — A)? (5)
i=1

where:

A; : Area of the convex hull for each cluster
n : Number clusters
A : Mean Area of the Convex Hulls

Variance of Cluster Area for Boston | 0.0058
Variance of Cluster Area for for LA | 0.0018

3.3.3 Density of Facilities

Finally, a higher-order center will also have a higher Density of Facilties, which is why Den-
sity of Facilities is also representative of the ordering of centers. We compare the densities of
the facilities for higher order and lower order facilities, and note the following key numerical
characteristic;

Parameters = Var(D) =

Z(Di - D)? (6)

where:

D; : Density of the convex hull for each cluster
n : Number clusters

D : Mean Density of the Convex Hulls

Variance of Density of Facilities for Boston | 23.65 Million
Variance of Density of Facilities for LA 1.32 Million




Overall, we note that the as each of the metrics above suggests, higher order centers are much
more dominant in a monocentric setting as opposed to a polycentric setting. This is particularly
shown to be the case for Los Angeles & Boston, which are the key examples for a polycentric
and a monocentric city within USA.

Future Work and Conclusion

In this study, we bring together the facility location data and the synthetic individual mobility
data generated from the TimeGeo model [5] to characterise the differences in monocentric and
polycentric settings within modern cities. We note that the differences in the size of centers for
monocentric cities is much larger than that for polycentric cities, where the clusters / city-centers
are more or less the same size. This is also seconded by the weighted network analysis that we
present towards the end of our work.

While this study focuses only on Los Angeles and Boston primarily because they are the most
studied and well-known examples of a polycentric and a monocentric city in the United States,
this characterisation can be extended to numerous other cities for which we have appropriate
data. Furthermore, other recently proved empirical results as those in [7] can be studied further in
the light of whether a city is monocentric or polycentric. Fitting mobility models and formulating
the differences in individual mobility trajectories for different monocentric and polycentric cities
can further inform the importance of this characterisation.
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