
State-Dependent Pricing & Matching Policies for

optimizing ride-sharing profit

Aparimit Kasliwal1, Dimitris Triantis1, and Lejun Zhou1

1Department of Civil and Environmental Engineering, University
of California, Berkeley

May 13, 2024

Abstract

This report examines a strategic approach to pricing and matching in
the Calyber Game. The simulation challenges teams to maximize profits
through dynamic pricing and efficient matching of riders, who arrive un-
predictably and can accept or reject quoted prices. Our strategy employs a
sophisticated algorithmic framework to manage real-time pricing and rider
pairing, emphasizing the optimization of revenue and cost-effectiveness.
This approach leverages extensive data analysis on rider behaviors and
geographic pricing patterns, enabling informed decision-making under the
constraints of rider patience and availability of matches. The results high-
light the effectiveness of our strategies in enhancing profitability while
addressing the complexities inherent in a dynamic urban transportation
environment. This abstract encapsulates our key methodologies, findings,
and the implications of our strategies on the operational success of ride-
sharing platforms.

1 Introduction

Calyber is a ride-sharing platform in Chicago which offers shared ride services
where it matches two riders with similar routes to share a ride, reducing costs
and fares. In this game, drivers are assumed to be infinitely available. Thus,
teams focus on pricing. Riders arrive randomly, and each is quoted a price
which they can accept or decline. Accepted riders are attempted to be paired
for shared rides. If a suitable match isn’t available immediately, the platform
can delay matching, although each rider’s limited waiting tolerance might force
solo dispatches, increasing costs. The game simulates the platform’s role in
maximizing profit by managing pricing and pairing decisions. The data that
each team is given consists of a set of historical rider arrival and request data as
well information about the Chicago Community Areas that are included. Using
these data, each team is tasked to develop a matching and pricing policy that
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aims to maximize their profit. In this report we will discuss our approach to
the Calyber Game.

2 Exploratory Data Analysis

2.1 Conversion Rate & Quoted Price

(a) Distribution of quoted price for
converted riders

(b) Distribution of quoted price for
not-converted riders

Figure 1: Comparison of quoted prices

2.2 Heterogeneity in Quoted Price & Count of Rides Based
on Geographical Variation

The primary objective of this phase of analysis is to delve into the intricate and
diverse distribution patterns of quoted prices, which exhibit significant vari-
ability based on the specific pickup and dropoff locations of the rides. This
exploration allows us to uncover nuanced trends and disparities in pricing strate-
gies, revealing how different factors such as distance, demand, and local market
conditions impact the prices quoted to the riders. By comprehensively exam-
ining these variations, we can better understand the complexities of pricing
mechanisms within the transportation network, enabling us to formulate more
informed strategies for pricing optimization and service delivery.

The way we construct the weights for different areas, discussed in one of the
following sections, also depends on the number of rides that started and ended
in a specific area.
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Figure 2: Quoted Price by Pickup-Area

Figure 3: Quoted Price by Dropoff-Area

Figure 4: Pickup & Dropoff counts by area

The conclusion drawn from the above three plots is that the quoted price
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is lower for trips originating from and terminating at one of those regions that
has a relatively higher demand.

2.2.1 Aggregating Area IDs

In order to also take into account the relative geographical distance between
different pickup & dropoff locations, we aggregated these points into different
Uber H3 Hexagons. The intuition for why we did this is as follows: we want
to quote a lower price not only for those regions that have a higher pickup /
dropoff count, but also for those regions that are geographcially near those
high demand regions.

The following figure captures the process of aggregating different points
based on their geographical closeness into H3 Hexagons at resolution 8.

Figure 5: Caption for the two figures side by side

2.3 Understanding Willingness to Pay & Maximum Wait-
ing Time

This part of analysis gives us an insight into two important parameters that can
be deduced from the data, but are not explicitly provided. For the quoted price,
understandably, the fraction of converted riders decreases as the quoted price is
increased. Getting the exact value of this conversion fraction for different ranges
of the quoted price was very helpful for us when we coded our own simulation
to test our pricing and matching algorithms, as discussed later.

For the waiting time, we leveraged the fact that maximum waiting time
of riders would be drawn from / can be well-approximated by an exponential
distribution. The following figure shows the distribution of waiting times of
those riders who were matched with other riders.

We found the parameter of the exponential distribution to be 69 if we con-
sidered only the training data, and 95 if we considered both the training & the
validation data.

Our pricing and matching policies are dynamic, tailored to adapt to the
evolving state of our system. These policies are outlined in detail in subsequent
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Figure 6: Fraction of converted riders Vs Quoted Price

Figure 7: Histogram of Waiting Times

sections. By considering factors such as proximity to other riders, demand
levels in specific regions, and minimum pricing thresholds, we aim to ensure ef-
ficient matching and fair pricing while maintaining profitability. This dynamic
approach enables us to respond effectively to changing market conditions and
rider demands, ultimately enhancing the overall profit.
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3 Methodology

3.1 Pricing Algorithm

For the pricing policy, if riders in the system are within the top 5 nearest
neighbors of a new rider’s pickup or dropoff location, we offer lower prices to
encourage easier matching. Additionally, pricing adjustments are made based
on the demand level of the pickup and dropoff regions, with lower prices for
high-demand areas and potentially higher prices for low-demand areas. Lastly,
to maintain profitability, we enforce a minimum price threshold of 0.65, ensuring
that prices below this level are not quoted to avoid financial loss.

The parameters we consider are:

• Neighbours origin: List containing top-5 neighbour area IDs of the origin

• Neighbours destination: List containing top-5 neighbour area IDs of the
destination

• Hexagon weights: The ratio of trips within a particular area ID
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Algorithm 1: Pricing Function Algorithm

Input: state s, rider instance i;
Output: quoted price p;
Parameter: neighbours origin and neighbours destination;

Initialization: hexagon weights for areas, γ ← 0;

Step 1: Calculate Gamma;
foreach rider in state do

if rider .pickup area ∈ neighbours origin ∨ rider .dropoff area ∈
neighbours destination then

γ ← γ + 1;
end

end
if γ ≥ 3 then

γ ← 3;
end

Step 2: Determine Pickup and Dropoff Variables;
pickup variable ← Get weight from hexagon weights for i.pickup area;
dropoff variable ← Get weight from hexagon weights for i.dropoff area;

Step 3: Compute Price;
price ← 0.65 + αpickup × (0.182728− pickup variable) + αdropoff ×
(0.345436− dropoff variable)− αstate × γ;

Step 4: Enforce Minimum Price;
if price ≤ 0.65 then

price ← price
+0.1× (0.2− pickup variable) + 0.1× (0.4− dropoff variable);

end

Return price

3.2 Matching Algorithm

In the matching, we evaluate three key factors and employ them to compute
matching scores for all waiting riders. These scores determine whether an exist-
ing rider in the state will be matched or if the new arrival will be added to the
state. Here, we delve into these four factors and elucidate why they are pivotal
in our matching process.

Our first consideration is the reduction in trip length achieved through
matching compared to dispatching the two riders individually. This factor di-
rectly impacts the final cost. Secondly, we assess the waiting time of the rider
until the current timestamp, ensuring it remains within acceptable limits to
avoid exceeding maximum waiting times. The last factor is the demand at pick-
up and drop-off locations. In areas with high demand, finding a better matched
rider becomes more feasible, thus elevating their value within the state. After
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we get all the scores, we will take the waiting rider with highest score as the
best match. In addition, there is a standard for matching, if the highest score is
still lower than the standard, it will not be matched even though this pair gets
the highest score. Below is the pseudo-code for the algorithm:

Algorithm 2: Matching Function Algorithm

Input: state s, arriving rider instance r;
Output: best waiting rider instance m, or None if no match;
Parameters: hexagon weights for areas;

Initialization: score list ← empty list;
Set origin and destination coordinates for rider r as origin 0 coordinate,
destination 0 coordinate;

foreach waiting rider w in state do
for hexagon weight h in hexagon weights do

if r.pickup area is in h then
pickup variable 0← corresponding pickup weight from h;

end
if r.dropoff area is in h then

dropoff variable 0← corresponding dropoff weight from h;
end
if w.pickup area is in h then

pickup variable 1← corresponding pickup weight from h;
end
if w.dropoff area is in h then

dropoff variable 1← corresponding dropoff weight from h;
end

end
Lshared ← calculate shared ride length between origin 0 coordinate,
destination 0 coordinate, and w’s coordinates;

tj ← max(r.arrival time− (w.arrival time+ θ
2 ), 0);

scorew ← (r.solo length+ w.solo length− Lshared) + β1 · tj − β2 ·
(pickup variable 0 + pickup variable 1)− β3 ·
(dropoff variable 0 + dropoff variable 1);
Append scorew to score list;

end
if score list is not empty then

m← waiting rider with the highest score in score list;
if maximum score in score list < threshold β then

m← None ; // No suitable match found within threshold

end

end
else

m← None ; // No waiting riders to match

end

Return m
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3.3 Simulation and Policy Ascent

To determine the optimal parameters, we conduct simulations on both training
and validation data. These simulations involve calculating the expected total
profit across all instances and employing policy ascent methodology.

Policy ascent is an iterative optimization technique used to improve decision-
making policies. It involves adjusting parameters incrementally in the direction
that maximizes the objective function—in this case, total profit.During each it-
eration of policy ascent, we evaluate the performance of the current policy and
adjust the parameters accordingly to improve its effectiveness. This iterative
process continues until a satisfactory level of performance is achieved or until
convergence is reached, indicating that further adjustments yield marginal im-
provements. Ultimately, policy ascent enables us to refine our decision-making
strategy, leading to improved outcomes and enhanced profitability in our oper-
ations.

4 Results

4.1 Simulation Result

In a single instance of our simulation, we evaluated the performance of our
pricing and matching algorithms using specific parameter settings. The pricing
parameters were set at αpickup = 0.25, αdropoff = 0.25, and αstate = 0.01,
aimed at reflecting the significance of pickup and dropoff locations as well as
the state of the service environment. The matching algorithm was configured
with parameters β1 = 0.002, β2 = 0.5, β3 = 0.5, β = 0.09, and θ = 95, designed
to optimize the service matching based on predefined criteria.

The simulation revealed that out of the potential user interactions, 683 riders
converted by accepting the quoted prices and completing their trips, while 650
riders were successfully matched with services. This underscores the efficacy
of the matching algorithm. However, there were 33 unhappy riders, indicating
potential discrepancies in pricing or service expectations that could be addressed
in future iterations. The economic analysis of the simulation demonstrated a
high level of efficiency with a total profit of 115.743 units. This profitability
reflects the financial viability of the model under the current parameter settings.

4.2 Testing Results

When it came to the final simulation, where all the teams competed on the test
data, our team ranked 4th in total, not including the benchmark policies. The
profit per minute for all teams can be seen in Figure 8. It should be noted that
the test data contained three different weeks of data collected from the same
time window as the training data. Our team performed decently, achieving
a profit per minute that is very close to the one of the winning, especially
comparatively to all teams, since as seen in Figure 8 some teams were not able
to achieve profitability.
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Figure 8: Profit ($/min) by team

When it comes to other relevant metrics, such as the ones seen in Table 1,
our team was able to rank around the middle for most of them. This shows that
our problem formulation and policies are intuitively sound but there is potential
for further improvement.

Table 1: Performance Metrics for TheLogisticalLads

Metric Value Rank Metric Value Rank

Profit ($/min) 3.18 4th Cost ($/min) 21.31 6th

Cost Efficiency 0.14 8th Throughput
(#/min)

10.11 6th

Match Rate 0.73 5th Conversion Rate 0.36 7th

Revenue ($/min) 24.49 9th Ave Payment
($/mile)

0.69 5th

Ave Quoted Price
($/mile)

0.70 7th Ave Waiting
Time (sec)

34.04 7th

Despite securing the 4th rank among competitive teams and demonstrating
substantial profitability, our approach indicated potential for further enhance-
ment, particularly if more time were available for refining our model’s parame-
ters.

Our strategy fundamentally depends on accurately estimating coefficients
that control pricing adjustments and rider matching decisions based on real-time
data. These coefficients (αpickup, αdropoff, αstate, β1, β2, β3, θ) are pivotal in de-
termining the optimal pricing and the effectiveness of our matching algorithms.
With the limited time frame of the simulation, we established preliminary values
that proved effective yet could be further improved.
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